Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Direct ; 6(10): e453, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36254336

RESUMEN

The composition of proanthocyanidins in the testa (seed coat) of bread wheat was analyzed by thiolysis of PA oligomers from developing grain and found to consist of (+)-catechin monomers, with a small amount of (+)-gallocatechin. The average chain length of soluble PA stayed relatively constant between 10 and 20 days post-anthesis, whereas that of unextractable PA increased over the same period, suggesting that increases in chain length might account for the insolubility of PAs from mature wheat grain. We carried out RNA-Seq followed by differential expression analysis from dissected tissues of developing grain from red- and white-grained near-isogenic lines differing in the presence of an active R gene that encodes a MYB transcription factor involved in control of PA biosynthesis. In addition to genes already identified encoding chalcone synthase, chalcone isomerase, flavanone 3-hydroxylase, and dihydroxyflavonoid 4-reductase, we showed that wheat genes encoding phenylalanine ammonia lyase, flavonoid 3',5'-hydroxylase, leucoanthocyanidin reductase, and a glutathione S-transferase (the orthologue of maize Bronze-2) were more highly expressed in the red NIL. We also identified candidate orthologues of other catalytic and regulatory components of flavonoid biosynthesis in wheat.

2.
Front Plant Sci ; 12: 705373, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394161

RESUMEN

Plant oxylipins are signaling molecules produced from fatty acids by oxidative pathways, mainly initiated by 9- and 13-lipoxygenases (9-LOX and 13-LOX), alpha-dioxygenases or non-enzymatic oxidation. Oxylipins from the 9-LOX pathway induce oxidative stress and control root development and plant defense. These activities have been associated with mitochondrial processes, but precise cellular targets and pathways remain unknown. In order to study oxylipin signaling, we previously generated a collection of Arabidopsis thaliana mutants that were insensitive to the 9-LOX products 9(S)-hydroxy-10,12, 15-octadecatrienoic acid (9-HOT) and its ketone derivative 9-KOT (noxy mutants). Here, we describe noxy1, noxy3, noxy5, noxy23, and noxy54 mutants, all affected in nucleus-encoded mitochondrial proteins, and use them to study the role of mitochondria in oxylipin signaling. Functional and phenotypic analyses showed that noxy plants displayed mitochondrial aggregation, reduced respiration rates and resistance to the complex III inhibitor Antimycin A (AA), thus indicating a close similarity of the oxylipin signaling and mitochondrial stress. Application of 9-HOT and 9-KOT protected plants against subsequent mitochondrial stress, whereas they boosted root growth reduction when applied in combination with complex III inhibitors but did not with inhibitors of other respiratory complexes. A similar effect was caused by linear-chain oxylipins from 13-LOX or non-enzymatic pathways having α,ß-unsaturated hydroxyl or keto groups in their structure. Studies to investigate 9-HOT and 9-KOT activity indicated that they do not reduce respiration rates, but their action is primarily associated with enhanced ROS responses. This was supported by the results showing that 9-HOT or 9-KOT combined with AA amplified the expression of oxylipin- and ROS-responding genes but not of the AA marker AOX1a, thus implying the activation of a specific mitochondria retrograde signaling pathway. Our results implicate mitochondrial complex III as a hub in the signaling activity of multiple oxylipin pathways and point at downstream ROS responses as components of oxylipin function.

3.
J Exp Bot ; 72(5): 1634-1648, 2021 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-33249501

RESUMEN

The salicinoids are phenolic glycosides that are characteristic secondary metabolites of the Salicaceae, particularly willows and poplars. Despite the well-known pharmacology of salicin, that led to the development of aspirin >100 years ago, the biosynthetic pathways leading to salicinoids have yet to be defined. Here, we describe the identification, cloning, and biochemical characterization of SpUGT71L2 and SpUGT71L3-isozymic glycosyltransferases from Salix purpurea-that function in the glucosylation of ortho-substituted phenols. The best substrate in vitro was salicyl-7-benzoate. Its product, salicyl-7-benzoate glucoside, was shown to be endogenous in poplar and willow. Together they are inferred to be early intermediates in the biosynthesis of salicortin and related metabolites in planta. The role of this UDP-glycosyltransferase was confirmed via the metabolomic analysis of transgenic plants produced by RNAi knockdown of the poplar orthologue (UGT71L1) in the hybrid clone Populus tremula×P. alba, INRA 717-1B4.


Asunto(s)
Glicósidos/biosíntesis , Glicosiltransferasas , Salix , Glicosiltransferasas/genética , Plantas Modificadas Genéticamente/enzimología , Populus/genética , Salix/enzimología , Salix/genética , Uridina Difosfato
4.
Plant Cell Environ ; 41(6): 1438-1452, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29499090

RESUMEN

Stress adaptation and translational regulation was studied using noxy7 (nonresponding to oxylipins7) from a series of Arabidopsis thaliana mutants. We identified the noxy7 mutation in At1g64790, which encodes a homolog of the yeast translational regulator General Control Nonderepressible1 (GCN1) that activates the GCN2 kinase; GCN2 in turn phosphorylates the α subunit of the translation initiation factor eIF2. This regulatory circuit is conserved in yeast and mammals, in which phosphorylated eIF2α (P-eIF2α) facilitates stress adaptation by inhibiting protein synthesis. In phenotypic and de novo protein synthesis studies with Arabidopsis mutants, we found that NOXY7/GCN1 and GCN2 mediate P-eIF2α formation and adaptation to amino acid deprivation; however, P-eIF2α formation is not linked to general protein synthesis arrest. Additional evidence suggested that NOXY7/GCN1 but not GCN2 regulates adaptation to mitochondrial dysfunction, high boron concentration, and activation of plant immunity to infection by Pseudomonas syringae pv tomato (Pst). In these responses, NOXY7/GCN1 acts with GCN20 to regulate translation in a noncanonical pathway independently of GCN2 and P-eIF2α. These results show the lesser functional relevance of GCN2 and P-eIF2α in plants relative to other eukaryotes and highlight the prominent role of NOXY7/GCN1 and GCN20 in regulation of translation and stress adaptation in plants.


Asunto(s)
Adaptación Fisiológica , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Factores de Elongación de Péptidos/química , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Homología de Secuencia de Aminoácido , Estrés Fisiológico , Adaptación Fisiológica/efectos de los fármacos , Alelos , Arabidopsis/microbiología , Factor 2 Eucariótico de Iniciación/metabolismo , Sitios Genéticos , Mutación/genética , Fenotipo , Fosforilación/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/fisiología , Estomas de Plantas/efectos de los fármacos , Estomas de Plantas/fisiología , Biosíntesis de Proteínas/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Pseudomonas/fisiología , Estrés Fisiológico/efectos de los fármacos
5.
Plant Cell ; 27(11): 3038-64, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26566919

RESUMEN

Transcriptional reprogramming is integral to effective plant defense. Pathogen effectors act transcriptionally and posttranscriptionally to suppress defense responses. A major challenge to understanding disease and defense responses is discriminating between transcriptional reprogramming associated with microbial-associated molecular pattern (MAMP)-triggered immunity (MTI) and that orchestrated by effectors. A high-resolution time course of genome-wide expression changes following challenge with Pseudomonas syringae pv tomato DC3000 and the nonpathogenic mutant strain DC3000hrpA- allowed us to establish causal links between the activities of pathogen effectors and suppression of MTI and infer with high confidence a range of processes specifically targeted by effectors. Analysis of this information-rich data set with a range of computational tools provided insights into the earliest transcriptional events triggered by effector delivery, regulatory mechanisms recruited, and biological processes targeted. We show that the majority of genes contributing to disease or defense are induced within 6 h postinfection, significantly before pathogen multiplication. Suppression of chloroplast-associated genes is a rapid MAMP-triggered defense response, and suppression of genes involved in chromatin assembly and induction of ubiquitin-related genes coincide with pathogen-induced abscisic acid accumulation. Specific combinations of promoter motifs are engaged in fine-tuning the MTI response and active transcriptional suppression at specific promoter configurations by P. syringae.


Asunto(s)
Arabidopsis/inmunología , Terapia de Inmunosupresión , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Inmunidad de la Planta/genética , Hojas de la Planta/inmunología , Pseudomonas syringae/fisiología , Transcripción Genética , Arabidopsis/genética , Arabidopsis/microbiología , Secuencia de Bases , Cromatina/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Redes Reguladoras de Genes , Genes de Plantas , Datos de Secuencia Molecular , Motivos de Nucleótidos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/microbiología , Regiones Promotoras Genéticas/genética , Pseudomonas syringae/crecimiento & desarrollo , Factores de Transcripción/metabolismo
6.
Plant Physiol ; 169(3): 2324-34, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26417008

RESUMEN

The oxylipins, a large family of oxygenated lipid derivatives, regulate plant development and immunity. Two members of the 9-lipoxygenase (9-LOX) oxylipin pathway, 9-hydroxyoctadecatrienoic acid and 9-ketooctadecatrienoic acid, control root development and plant defense. Studies in Arabidopsis (Arabidopsis thaliana) using a series of 9-hydroxyoctadecatrienoic acid- and 9-ketooctadecatrienoic acid-insensitive nonresponding to oxylipins (noxy) mutants showed the importance of the cell wall as a 9-LOX-induced defense component and the participation of NOXY proteins in signaling cell wall damage. Here, we examined 9-LOX signaling using the mutants lox1lox5, which lacks 9-LOX activity, and noxy2-2, which shows oxylipin insensitivity and mitochondrial dysfunction. Mutants in brassinosteroids (BRs), a class of plant hormones necessary for normal plant growth and the control of cell wall integrity, were also analyzed. Several lines of evidence indicated that 9-LOX-derived oxylipins induce BR synthesis and signaling to activate cell wall-based responses such as callose deposition and that constitutive activation of BR signaling in bri1-EMS-suppressor 1-D (bes1-D) plants enhances this response. We found that constitutive BR signaling in bes1-D and brassinolide-resistant 1-1D (bzr1-1D) mutants conferred resistance to Pseudomonas syringae. bes1-D and bzr1-1D showed increased resistance to Golovinomyces cichoracearum, an obligate biotrophic fungus that penetrates the cell wall for successful infection, whereas susceptibility was enhanced in lox1lox5 and noxy2-2. Our results indicate a sequential action of 9-LOX and BR signaling in activating cell wall-based defense, and this response prevents pathogen infection. These results show interaction between the 9-LOX and BR pathways and help to clarify their role in modulating plant defense.


Asunto(s)
Arabidopsis/enzimología , Brasinoesteroides/metabolismo , Lipooxigenasa/metabolismo , Enfermedades de las Plantas/inmunología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/inmunología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pared Celular/metabolismo , Lipooxigenasa/genética , Mutación , Oxilipinas/metabolismo , Enfermedades de las Plantas/microbiología , Pseudomonas syringae/fisiología
7.
Plant Methods ; 10: 22, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25053970

RESUMEN

BACKGROUND: Fluorescent proteins are extraordinary tools for biology studies due to their versatility; they are used extensively to improve comprehension of plant-microbe interactions. The viral infection process can easily be tracked and imaged in a plant with fluorescent protein-tagged viruses. In plants, fluorescent protein genes are among the most commonly used reporters in transient RNA silencing and heterologous protein expression assays. Fluorescence intensity is used to quantify fluorescent protein accumulation by image analysis or spectroscopy of protein extracts; however, these methods might not be suitable for medium- to large-scale comparisons. RESULTS: We report that laser scanners, used routinely in proteomic studies, are suitable for quantitative imaging of plant leaves that express different fluorescent protein pairs. We developed a microtiter plate fluorescence spectroscopy method for direct quantitative comparison of fluorescent protein accumulation in intact leaf discs. We used this technique to measure a fluorescent reporter in a transient RNA silencing suppression assay, and also to monitor early amplification dynamics of a fluorescent protein-labeled potyvirus. CONCLUSIONS: Laser scanners allow dual-color fluorescence imaging of leaf samples, which might not be acquired in standard stereomicroscope devices. Fluorescence microtiter plate analysis of intact leaf discs can be used for rapid, accurate quantitative comparison of fluorescent protein accumulation.

8.
Plant J ; 67(3): 447-58, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21481031

RESUMEN

9-lipoxygenases (9-LOXs) initiate fatty acid oxygenation in plant tissues, with formation of 9-hydroxy-10,12,15-octadecatrienoic acid (9-HOT) from linolenic acid. A lox1 lox5 mutant, which is deficient in 9-LOX activity, and two mutants noxy6 and noxy22 (non-responding to oxylipins), which are insensitive to 9-HOT, have been used to investigate 9-HOT signalling. Map-based cloning indicated that the noxy6 and noxy22 mutations are located at the CTR1 (CONSTITUTIVE ETHYLENE RESPONSE1) and ETO1 (ETHYLENE-OVERPRODUCER1) loci, respectively. In agreement, the noxy6 and noxy22 mutants, renamed as ctr1-15 and eto1-14, respectively, showed enhanced ethylene (ET) production. The correlation between increased ET production and reduced 9-HOT sensitivity indicated by these results was supported by experiments in which exogenously added ethylene precursor ACC (1-aminocyclopropane-1-carboxylic acid) impaired the responses to 9-HOT. Moreover, a reciprocal interaction between ET and 9-HOT signalling was indicated by results showing that the effect of ACC was reduced in the presence of 9-HOT. We found that the 9-LOX and ET pathways regulate the response to the lipid peroxidation-inducer singlet oxygen. Thus, the massive transcriptional changes seen in wild-type plants in response to singlet oxygen were greatly affected in the lox1 lox5 and eto1-14 mutants. Furthermore, these mutants displayed enhanced susceptibility to both singlet oxygen and Pseudomonas syringae pv. tomato, in the latter case leading to increased accumulation of the lipid peroxidation product malondialdehyde. These findings demonstrate an antagonistic relationship between products of the 9-LOX and ET pathways, and suggest a role for the 9-LOX pathway in modulating oxidative stress, lipid peroxidation and plant defence.


Asunto(s)
Arabidopsis/efectos de los fármacos , Etilenos/metabolismo , Peroxidación de Lípido , Estrés Oxidativo , Oxilipinas/farmacología , Aminoácidos Cíclicos/farmacología , Arabidopsis/genética , Arabidopsis/microbiología , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Grasos/farmacología , Fluorescencia , Regulación de la Expresión Génica de las Plantas , Cetoácidos/farmacología , Malondialdehído/metabolismo , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , Oxilipinas/síntesis química , Fenotipo , Enfermedades de las Plantas/microbiología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/fisiología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Pseudomonas syringae/patogenicidad , Plantones/efectos de los fármacos , Plantones/fisiología , Transducción de Señal , Oxígeno Singlete/farmacología , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...